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Abstract. The effect of the intra-well hopping associated with an asymmetricinterface charge 
distribution on the general hopping conductivity in amorphous superlattices is studied. It is 
found that the current density and hence the conductivity will be larger compared to that of 
an ordinary superlattice. 

1. Introduction 

Hopping conduction in superlattices has been studied theoretically (Esaki and Tsu 1970, 
Kazarinov and Suris 1972, Tsu and Dohler 1975, Calecki et a1 1984) and experimentally 
(Esaki and Chang 1974). It is assumed that electrons may be initially localised in the z 
direction inside the quantum wells of the superlattice but they can move in the z direction 
by hopping from one quantum well to its neighbours when they interact with phonons. 

In this work we describe a model that permits intra-well hopping as well as inter-well 
hopping. The reason for this is the observation of built-in electric fields (as large 
as 4 x lo5 V cm-') associated with an asymmetric charge distribution in amorphous 
superlattices made from alternating layers of a-Si : H and a-Si0 : H or from a-Si : H 
(Abeles and Tiedje 1984, Roxlo and Abeles 1986). Interface defect densities have been 
determined in these materials by using a number of spectroscopic techniques such as 
mid-gap optical absorption (Tiedje and Abeles 1984), electron-spin resonance (Wilson 
eta1 1985), conductivity (Tiedje and Abeles 1984) and electro-absorption measurements 
(Roxlo and Abeles 1986). These techniques give estimates for the interface defect 
densities which vary from 1O1O to 10l2 cm-2, 

In the a-Si : H/a-Si0 : H materials the charge distribution deduced from electro- 
absorption measurements is well described by an interface dipole model. Electro- 
absorption spectroscopy indicates that the interfaces are charged and asymmetrical. The 
built-in field associated with the asymmetrical charge distribution in the layer was 
observed to be as high as 4 X lo5 V cm-'. Our model is basedon the asymmetricinterface 
dipole model of Roxlo and Abeles (1986), where the interface dipole region has a finite 
thickness (figure 1). As a result of formation of large built-in fields, electrons will be 
localised at the edges of the wells. So we will have intra-well hopping as well as inter- 
well hopping. 
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In 9 2 we present a derivation of the electrical current expression for the asymmetric 
interface dipole model. In 9 3 we compare the result with that of an ordinary superlattice 
with no built-in fields. It turns out that the current and hence the conductivity will be 
larger compared to that of an ordinary superlattice. 

2. Derivation of the hopping current in the asymmetric interface dipole model 

We consider an electron gas interacting both with a scattering system and an external 
field F. The total Hamiltonian is expressed as 

HT = H e  + H ,  + Hi 
where He is the one-electron Hamiltonian, H ,  is the scattering system Hamiltonian and 
H, is the interaction Hamiltonian between electrons and the scattering system. 

The one-electron Hamiltonian He includes the effect of the applied field F in the z 
direction. The eigenstates 1 v )  of He are assumed to be localised in the z direction. In 
Dirac notation we can write He I v )  = E ,  1 v )  where E ,  are the eigenvalues of He.  

To calculate the hopping current in the z direction we start from the usual expression 
for the current density J,: 

where ( - e )  is the electronic charge, z is the mean z coordinate of an electron in state I v )  
given by ( v  1 Z I  v ) , f ,  is the occupation probability of the state 1 v ) ,  W,,, is the jump rate 
from the state 1 v )  to the state I U’) and finally !2 is the volume of the system, which is 
defined as NSd  (here N ,  S and d are number of wells, perpendicular area and period of 
the superlattice). Because of the two kinds of sub-wells in the system the localised states 
will be classified into two groups, 1 v ) ~  and 1 v ) ~ ,  depending on whether the electron is in 
the a-type well or b-type well. Here the index v corresponds to three indices (n ,  i, k )  
which specify the main well of localisation, the state number in the well and the two- 
dimensional momentum (ilk) corresponding to the motion in the direction perpendicular 
to the z axis. 

Assuming that f, 6 1 (which corresponds to a low concentration of carriers) we can 
neglect the Pauli factors in the square brackets. Further, for simplicity we make the 
following assumptions, which can easily be justified for moderate external fields: 

A =  E: - E: + kT P a )  

A %= eFd (2b) 
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Figure 2. Potentials and ground states for electrons 

where d = d l  + d 2  is the lattice period in the z direction. As a result of the assumption 
(26) we can drop the indices i: this means that electrons always hop between the ground 
states of the wells (figure 2). In the nearest-neighbour approximation where we have 
only non-zero transition rates like WEGb , Wiz!  , WiG; and Wkz! , I ,  becomes 

1, = ( - e / a )  2 2 [ h ( z k , k '  - Z i . k ) ( f i , k W i 3 k . k '  - f i , k r w k z : n , k )  
n k , k '  

wherein the indices i have been dropped. 
From the form of equation ( 3 )  it is noted that the second term is exactly equal to the 

first term. On the other hand, if we replace n+n + 1 in the third, sixth and eighth terms 
we find the fourth, fifth and seventh terms respectively. If we look at figure 2 we can 
immediately write down: 

Then J ,  becomes: 

If we denote the total number of electrons in the nth well by n ,  we can write n = n, + nb 
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I3 i 

Figure 3. The resistivity network of the system. 

where n, and ytb are the number of electrons in wells a and b,  respectively. Then we can 
define the normalisation such that 

and so on. 
To proceed further we consider the resistivity network of this system, which is shown 

in figure 3. From symmetry arguments, the currents in the resistances R3 will be the 
same, which is denoted II. Also the currents in the resistances R4 will be the same, 
denoted I,. Therefore the currents in the resistances RI  and R2 will be the same and will 
be called I,: 

I ,  = - e ( f a ( W ) E z b  - f b ( W ) k G a )  = -e(fb(w)kf?l - f a ( w ) t T l b : n )  (7) 
with fa = Sn, and fb = Snb. Substituting equation (7) in (5) and doing the summation 
over n ,  with the definition Q = NSd, we write 

1, = -e(na(w);zb - nb(w)kfa )  - e(na(Wiz:l - n a ( w > ; T ? : n >  

- e(nb(W)kzkl - n b ( w ) k ? ? : n ) *  (8) 
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In equation (8) the first term corresponds to J z ,  and the second and the third terms 
correspond to J1 and J 3  respectively ( J z  = J1 + J 2  + J 3 ) .  To calculate these current 
density components we need to calculate n, and n b  separately (the transition rates are 
assumed to be known). The concentrations n, and n b  are calculated in Appendix 1. Using 
the Miller and Abraham formula for the transition rates (Miller and Abraham 1960) we 
can write 

for transitions upwards in energy, and 

wq = vphJ(rr,) (10) 

J ( r ,  1 = exp( - 2r, /a> (11) 

for transitions downwards in energy. Here Vph is the phonon frequency and 

is the usual overlap integral. 
Equations (9) and (10) are derived with the aid of Fermi's golden rule, using the 

electron-phonon interaction in the deformation potential approximation for the per- 
turbation Hamiltonian V. The factor exp( -2r,/a) comes from the square of the transition 
matrix element of V ,  which is proportional to the overlap between the local 
wavefunctions on sites i andj(here a is the lattice parameter). In Appendix 2 the transfer 
integrals will be calculated for this particular problem. 

In the presence of the applied electric fieldF, the energies are modified: E = E + eFz 
(the electronic charge is -e). If we calculate the energy differences for the above 
transitions we find 

E;+l - E; = ( E ,  + eFz;+,) - ( E  + eFz; )  = eFd > 0 

E;+l - E: = ( E ,  + eFz;+l) - ( E b  + eFz:) = E ,  - & b  + eFd2 < 0 

Eb, - E: = (&b + d'zb,) - ( E ,  + eFZ:) = & b  - E ,  + eFdl > 0 

Ei+1 - E: = ( E ,  + eFZ;+,)  - (&b + eF2;)  = E ,  - & b  f eFd, < 0. 

Accordingly the transition rates are 

W;<:a+l = Wb,<?, = vphJ(d) exp(-eFd/kT) (12a) 

Here we dropped the angular brackets because for this particular problem the J and 
therefore the W do not depend on k .  Substituting the transition rates from equations 
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(12a)-(12f) and the values of n, and n b  from Appendix 1 into equation (8), we can 
calculate the total current density: 

J ,  = 
-ed(d)[exp(-eFd/kT) - 1]J(d,){exp[-(A + eFd, ) /kT]  + 1 ) V p h  

J(d,){exp[-(A + eFdl)/kT] + 1) + J(d2){exp[-(A - eFd,) /kT] + 1) 

- enJ(d)[exp(-eFd/kT) - 1]J(d2){exp[-(A - e~d , ) /kT]  + 1)vph 
J(d,){exp[-(A +eFd,)/kT] + l}+J(d,){exp[-(A - e F d 2 ) / k T ]  + l} 

- enJ(d,)J(d,>{exp[ -(A + eFd,)/kT] - exp[-(A - &d2)/kT])vPh 
J(d,){exp[-(A + eFdl)/kT] + l}+J(d,){exp[-(A - eFd2) /kT]  + 1)' 

(13) 
In Appendix 2 we show that J ( d , )  9 J ( d 2 ) ,  which is larger than J ( d ) .  Therefore we 

can easily neglect J(d)/J(d,) and J(d,) /J(d,) .  So (13) becomes 

J ,  = -enJ(d)[exp(-eFd/kT) - 1]Vph 

exp(-eFd,/kT) - exp(eFd2/kT) 
exp[-(A+eFd,)/kT]+ 1 ' 

- enJ(d)exp(-A/kT)v,, (14) 

3. Results and discussion 

In Appendix 3 we calculate the current density for an ordinary superlattice with no built- 
in field. If we compare (14) with (A3.6), we see that the first term in (14) is the current 
density in the absence of the built-in field and the second term is the increase in the 
hopping current due to the built-in field. Let us denote this term byJhi. To estimate the 
order of magnitude of this current we set d l  = d2 = d/2. In this case J b i  becomes 

exp( - A/kT) 
J h ,  = nd(d)v$ ,  2 sinh(eFd/2kT). 

exp[-(A + eFd/2)/kT] + 1 

So the correction will be small for small external electric fields and larger for higher 
fields. Further if we remember that A + eFd, kT,  we neglect the exponential term in the 
denominator of (14) and (15). So in the ohmic limit (14) becomes 

J ,  = [ne2J(d)Fdvph/kT][1 + exp(-A/kT)]. (16) 
Therefore the correction will be exp( - A/kT) times the current density of an ordinary 
superlattice with no built-in field. Since we have assumed that A + kT,  we can find an 
upper limit for the correction term: the maximum value of the correction will be e-' = 
0.37 times the current density of an ordinary superlattice. 

4. Conclusions 

We have investigated the effect of the intra-well hopping and an asymmetric interface 
charge distribution on general hopping conductivity in superlattices. We have found 
that the current density and hence the conductivity will be larger compared to that 
observed in an ordinary superlattice. The upper limit of the enhancement is found to be 
about 37%. It should be emphasised that our formulation is based on the assumption 
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that electrons always hop between the ground states of the sub-wells. Further work 
should focus on incorporating the excited states. 
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Appendix 1. Calculation of n, and I t b  

As we stated earlier (equation (7)) the current from a, to b, over the resistance R1 is 
equal to the current from b, to a, + over R2: 

- e(fa(W>:zh -fh(W)k;’) = - e ( f b ( W > k ? l  -fa(U?:Tlb:n). 

If we divide each side of (7) by S we get 

(A l .  1) 

On the other hand the normalisation condition for n, and nb is 

n, + n b  = n. (A1.2) 

In equations (Al .  1) and (Al.2) the transition rates are assumed to be known (equations 
(12a)-(12f)). The only unknowns are n, and nh. If we solve n, and nb from (Al.1) and 
(A1.2) we find 

n, = n[J(d1) + J(d2)l  (A1.3) 
J(d,){exp[-(A + eFd, ) /kT]  + 11 + J(d2){exp[-(A - eFd2)/kT] + 1) 

n{J(dl)exp[-(A + eFd,)/kT] + J(d,)exp[-(A - eFd,) /kT]}  
J(d,){exp[-(A + eFd,)/kT] + 1) + J(d2){exp[-(A - eFd,)/kT] + 1} 

nb = . (A1.4) 

Appendix 2. Calculation of the transfer integrals 

Assuming that the built-in fields are uniform, we can write (figure Al) :  

V ( z )  = eF,z o < z < z ,  

V(z )  = -eF2(z - d) < z < dl  

(A2.1) 

(A2.2) 
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a b a b ’  
Figure A l .  Potentials and the appropriate wavefunctions for electrons. 

V ( z )  = V,, - eF2(z - d,)  dl  < z < d. (A2.3) 

The ground-state wavefunctions associated with these potentials (Zawadzki 1983) are 

Q, 6 = BA t z  exp( - atz )  A t  = 4 ( ( ~ ; ) ~  ai = (3m*eF1/2h2)1/3 (A2.4) 

q,O” = BAk(dl - z)exp[-a,O”(dl - z)] 

A; = ~ ( L U ; ) ~  a! = (3m*eF2/2h2)’l3 
(A2.5) 

q 1  = B’exp(-Kz) (A2.6) 

~ , ~ = B ‘ e x p [ - K ( d ~ - z ) ]  K =  [2m*(vOc - ~ ) / h ] ’ / ~ .  (A2.7) 

Here the coefficients B and B‘ are to be found from the normalisation over the distance 
d. 

The transfer integral J ( d l )  is 

Now defining 

A$ =AF1 Ab = AF2 with A = 6m*e/h2 (A2.9) 

J ( d l )  becomes 

J ( d l )  = A2B2eF!F2 loz1 z2(dl - z )  e ~ p ( - A ’ / ~ F ; / ~ z )  e ~ p [ - A l / ~ F : / ~ ( d ~  - z ) ]  dz  

- A2B2eF,F: 1 z(dl - z ) ( z  - d )  e ~ p ( - A ~ / ~ F ; / ~ z )  

x e ~ p [ - A l / ~ F : / ~ ( d ~  - z)]dz. (A2.10) 

d l  

2 1  

Further with the definitions 

C=A2B2eF1 F2 exp( -A 113 F:I3dl) and a = A ‘I3 (Fi13 - F1I3 2 )  (A2.11) 

we can write 

- F2 ldl [ - d l d 2 2  + (d,  + d ) z 2  - 2’1 exp(-az) dz 
21 

(A2.12) 

To proceed further we have to know the value of zl. Let us assume that F1 = 2F2. 
The condition 

f F d z = O  
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requires that Flzl = F2(d - zl), which gives z1 = d/3. We can also take dl = d/2, so 
J ( d l )  becomes 
J ( d ) , )  = CF2{(d2/a2)[-(7/18) exp(-ad/3) + (1/4) exp(-ad/2)]} 

+ CF2{(d/a3)[-exp(-ad/3) - 21 + (l/a4)[18 exp(-ad/3) 
- 6 exp( - ad/2) - 121). (A2.13) 

Taking F, = 2F2 = 2 x lo6 V m-l, m* = 0.014moanddl = d, = 50 A, we show that a = 
3 X 1O'm-l (A2.17) and B = (A2.19). Substituting the above values in (A2.13) 
we find 

J ( d , )  = mev.  (A2.14) 
On the other hand J (d2)  is 

d 

J ( d d  = I,, q1V(z)q2 d z  = @ ' I 2  exP(-Kd2)(Vocdz - eF,dZ/2). (A2.15) 

Taking m* = 0.014mo and V,, - E = 200 meV we find K = 2.5 x lo8 and ford = 100 8, 
we show that B' = d5 x lo4 (A2.21). So for F2 = lo6 V m-', J(d2)  becomes 

J ( d 2 )  = 2 x + 4 x = 2 x meV. (A2.16) 
Calculation of a: 

a = A 113 ( F i b  - F1/? , ) = (6m*e/h)1/3(Fi/3 - F;/?). 

If we put m* = 0.014mo, F1 = 2 x lo6 V m-l and F2 = lo6 V m-' we find 
a = 3 x io7 m-' 

Calculation of B: from the normalisation condition 

Iod q;* qt d z  = 1 

which gives 

B2A2 Iod z 2  exp(-2a;z) d z  = 16B(~u;)~{[d~/2a;  - 2 d / 4 ( ~ ~ ; ) ~  

(A2.17) 

- 2 / 8 ( ~ ~ ; ) ~ ]  exp(-2ad) - 2/8(a;)3} = 1. (A2.18) 
Here we put A; = 16(ab)6. If we put a; = a = 3 x lo7 m-' and d = 100 8, in (A2.18) 
we find 

B = lo-''. (A2.19) 
Calculation of B': from the normalisation condition 

lod q:ql d z  = 1 

we find 

B' = 1/ lod exp(-2Kz) d z  = 2K/[1 - exp(-2Kd)] (A2.20) 

withK= [2m*(V0, - e)/h2]. Takingm* = 0.014moandVoc - E = 200meVwefindK= 
2.5 x 10' m-l and fo rd  = 100 8, 

(A2.21) B' = d 5  x lo4. 



5450 M Saglam et a1 

Appendix 3. Calculation of the hopping current for an ordinary superlattice with no 
built-in fields 

When there is no built-in field we will have only inter-well hopping. So in this case in the 
nearest-neighbour approximation equation (1) becomes 

J = ( -e /n)  2 2 [ i ( Z n + l , k '  - Z n , k ) ( f n . k W n . k : n + l , k '  - f n + l , k '  W n + l , k ' : n , k )  
n k , k '  

-k i ( Z n -  1,k'  - Z n , k ) ( f n , k  W n , k : n -  1 ,k'  - f n -  1.k'  wn- l , k ' : n , k ) l .  (A3.1) 

If we replace n+ n + 1 in the second term we find the first term. Remembering that 
z , , ~ , ~ ,  - z n , k  = d we can write (A3.1) as 

J z  = (-ed/Q) 2 2 ( f n , k W n , k : n + l , k '  - f n + l , k ' W n + l , k ' : n , k ) .  (A3.2) 

If we denote the total number of electrons in the nth well by n we can define the 
normalisation such thatf, = f n + l  = Sn. By this definition (A3.2) becomes 

n k . k '  

(A3.3) 

Here ( ) means the thermal average, which is defined as 

and so on. Using the Miller and Abraham formula we can write 

( W n : n + l  = ~ p h J ( d )  ex~(-eFdlkT)  (A3.4) 

( W n + l : n  = ~ p h J ( d ) *  (A3.5) 

To go further we define Q = NSd,  substitute (A3.4) and (A3.5) into (A3.3) and do the 
summation over n. So the current density becomes 

(A3.6) J ,  = -env,,J(d)[exp(-eFd/kT) - 11. 
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